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ABSTRACT

Graph Neural Networks (GNNs) have achieved tremendous success

in various real-world applications due to their strong ability in

graph representation learning. GNNs explore the graph structure

and node features by aggregating and transforming information

within node neighborhoods. However, through theoretical and em-

pirical analysis, we reveal that the aggregation process of GNNs

tends to destroy node similarity in the original feature space. There

are many scenarios where node similarity plays a crucial role. Thus,

it has motivated the proposed framework SimP-GCN that can ef-

fectively and efficiently preserve node similarity while exploiting

graph structure. Specifically, to balance information from graph

structure and node features, we propose a feature similarity preserv-

ing aggregation which adaptively integrates graph structure and

node features. Furthermore, we employ self-supervised learning to

explicitly capture the complex feature similarity and dissimilarity

relations between nodes.We validate the effectiveness of SimP-GCN

on seven benchmark datasets including three assortative and four

disassorative graphs. The results demonstrate that SimP-GCN out-

performs representative baselines. Further probe shows various ad-

vantages of the proposed framework. The implementation of SimP-

GCN is available at https://github.com/ChandlerBang/SimP-GCN.
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1 INTRODUCTION

Graphs are essential data structures that describe pairwise relations

between entities for real-world data from numerous domains such

as social media, transportation, linguistics and chemistry [1, 24,

35, 42]. Many important tasks on graphs involve predictions over

nodes and edges. For example, in node classification, we aim to
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predict labels of unlabeled nodes [15, 17, 33]; and in link prediction,

we want to infer whether there exists an edge between a given

node pair [16, 41]. All these tasks can be tremendously facilitated

if good node representations can be extracted.

Recent years have witnessed remarkable achievements in Graph

Neural Networks (GNNs) for learning node representations that

have advanced various tasks on graphs [1, 24, 35, 42]. GNNs ex-

plore the graph structure and node features by aggregating and

transforming information within node neighborhoods. During the

aggregation process, GNNs tend to smooth the node features. Note

that in this work, we focus on one of the most popular GNN mod-

els, i.e., graph convolution network (or GCN) [15]; however, our

study can be easily extended to other GNN models as long as they

follow a neighborhood aggregation process. By connecting GCN

with Laplacian smoothing, we show that the graph convolution op-

eration in GCN is equivalent to one-step optimization of the signal

recovering problem (see Section 3.1). This operation will reduce

the overall node feature difference. Furthermore, through empirical

study, we demonstrate that (1) given a node, nodes that have top

feature similarity with the node are less likely to overlap with these

that connect to the node ( we refer to this as the “ Less-Overlapping"

problem in this work); and (2) GCN tends to preserve structural

similarity rather than node similarity, no matter whether the graph

is assortative (when node homophily [25] holds in the graph) or

not (see Section 3.2).

Neighbor smoothing from the aggregation process and the less-

overlapping problem inevitably introduce one consequence – node

representations learned by GCN naturally destroy the node similar-

ity of the original feature space. This consequence can reduce the

effectiveness of the learned representations and hinder the perfor-

mance of downstream tasks since node similarity can play a crucial

role in many scenarios. Next we illustrate several examples of these

scenarios. First, when the graph structure is not optimal, e.g., graphs

are disassortative [26] or graph structures have been manipulated

by adversarial attacks, relying heavily on the structure information

can lead to very poor performance [13, 27, 36, 44]. Second, since

low-degree nodes only have a small number of neighbors, they

receive very limited information from neighborhood and GNNs

often cannot perform well on those nodes [32]. This scenario is

similar to the cold-start problem in recommender systems where

the system cannot provide a satisfying recommendation for new

users or items [2]. Third, for nodes affiliated to the “hub" nodes

which presumably connect with many different types of nodes,

the information from the hub nodes could be very confusing and

misleading [37]. Fourth, when applying multiple graph convolution
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layers, GNNs can suffer over-smoothing problem that the learned

node embeddings become totally indistinguishable [18, 22, 28].

In this work, we aim to design a new graph convolution model

that can better preserve the original node similarity. In essence,

we are faced with two challenges. First, how to balance the in-

formation from graph structure and node features during

aggregation? We propose an adaptive strategy that coherently in-

tegrates the graph structure and node features in a data-driven way.

It enables each node to adaptively adjust the information from graph

structure and node features. Second, how to explicitly capture

the complex pairwise feature similarity relations?We employ

a self-supervised learning strategy to predict the pairwise feature

similarity from the hidden representations of given node pairs. By

adopting similarity prediction as the self-supervised pretext task,

we are allowed to explicitly encode the pairwise feature relation.

Furthermore, combining the above two components leads to our

proposed model, SimP-GCN, which can effectively and adaptively

preserve feature and structural similarity, thus achieving state-of-

the-art performance on a wide range of benchmark datasets. Our

contributions can be summarized as follows:

• We theoretically and empirically show that GCN can destroy

original node feature similarity.

• We propose a novel GCN model that effectively preserves

feature similarity and adaptively balances the information

from graph structure and node features while simultaneously

leveraging their rich information.

• Extensive experiments have demonstrated that the proposed

framework can outperform representative baselines on both

assortative and disassortative graphs. We also show that

preserving feature similarity can significantly boost the ro-

bustness of GCN against adversarial attacks.

2 RELATEDWORK

Over the past few years, increasing efforts have been devoted to-

ward generalizing deep learning to graph structured data in the

form of graph neural networks. There are mainly two streams of

graph neural networks, i.e. spectral basedmethods and spatial based

methods [24]. Spectral based methods learn node representations

based on graph spectral theory [29]. Bruna et al. [3] first gener-

alize convolution operation to non-grid structures from spectral

domain by using the graph Laplacian matrix. Following this work,

ChebNet [6] utilizes Chebyshev polynomials to modulate the graph

Fourier coefficients and simplify the convolution operation. The

ChebNet is further simplified to GCN [15] by setting the order of

the polynomial to 1 together with other approximations. While

being a simplified spectral method, GCN can be also regarded as a

spatial based method. From a node perspective, when updating its

node representation, GCN aggregates information from its neigh-

bors. Recently, many more spatial based methods with different

designs to aggregate and transform the neighborhood information

are proposed including GraphSAGE [10], MPNN [9], GAT [33], etc.

While graph neural networks have been demonstrated to be

effective in many applications, their performance might be im-

paired when the graph structure is not optimal. For example, their

performance deteriorates greatly on disassortative graphs where

homophily does not hold [27] and thus the graph structure intro-

duces noises; adversarial attack can inject carefully-crafted noise

to disturb the graph structure and fool graph neural networks into

making wrong predictions [34, 44, 45]. In such cases, the graph

structure information may not be optimal for graph neural net-

works to achieve better performance while the original features

could come as a rescue if carefully utilized. Hence, it urges us to

develop a new graph neural network capable of preserving node

similarity in the original feature space.

3 PRELIMINARY STUDY

In this section, we investigate if the GCNmodel can preserve feature

similarity via theoretical analysis and empirical study. Before that,

we first introduce key notations and concepts.

Graph convolutional network (GCN) [15] was proposed to solve

semi-supervised node classification problem, where only a subset

of the nodes with labels. A graph is defined as G = (V, E,X),
whereV = {𝑣1, 𝑣2, ..., 𝑣𝑛} is the set of 𝑛 nodes, E is the set of edges

describing the relations between nodes and X = [x�1 , x
�
2 , . . . , x

�
𝑛 ] ∈

R
𝑛×𝑑 is the node feature matrix where 𝑑 is the number of features

and x𝑖 indicates the node features of 𝑣𝑖 . The graph structure can

also be represented by an adjacency matrix A ∈ {0, 1}𝑛×𝑛 where

A𝑖 𝑗 = 1 indicates the existence of an edge between nodes 𝑣𝑖 and
𝑣 𝑗 , otherwise A𝑖 𝑗 = 0. A single graph convolutional filter with

parameter 𝜃 takes the adjacency matrixA and a graph signal f ∈ R𝑛
as input. It generates a filtered graph signal f ′ as:

f
′ = 𝜃 D̃− 1

2 ÃD̃
− 1

2 f, (1)

where Ã = A + I and D̃ is the diagonal matrix of Ã with D̃𝑖𝑖 =∑
𝑗 Ã𝑖 𝑗 . The node representations of all nodes can be viewed as

multi-channel graph signals and the 𝑙-th graph convolutional layer

with non-linearity is rewritten in a matrix form as:

H
(𝑙) = 𝜎 (D̃−1/2

ÃD̃
−1/2

H
(𝑙−1)

W
(𝑙) ), (2)

where H
(𝑙) is the output of the 𝑙-th layer, H(0) = X, W(𝑙) is the

weight matrix of the 𝑙-th layer and 𝜎 is the ReLU activation function.

3.1 Laplacian Smoothing in GCN

As shown in Eq. (1), GCN naturally smooths the features in the

neighborhoods as each node aggregates information from neigh-

bors. This characteristic is related to Laplacian smoothing and it

essentially destroys node similarity in the original feature space.

While Laplacian smoothing in GCN has been studied [18, 38], in

this work we revisit this process from a new perspective.

Given a graph signal f defined on a graph G with normalized

Laplacian matrix L = I − D̃
− 1

2 ÃD̃
− 1

2 , the signal smoothness over

the graph can be calculated as:

f
𝑇
Lf =

1

2

∑
𝑖, 𝑗

Ã𝑖 𝑗

(
f𝑖√
1 + 𝑑𝑖

−
f𝑗√
1 + 𝑑 𝑗

)2
. (3)

where 𝑑𝑖 and 𝑑 𝑗 denotes the degree of nodes 𝑣𝑖 and 𝑣 𝑗 respectively.

Thus a smaller value of f𝑇 Lf indicates smoother graph signal, i.e.,

smaller signal difference between adjacent nodes.

Suppose that we are given a noisy graph signal f0 = f
∗ +𝜂, where

𝜂 is uncorrelated additive Gaussian noise. The original signal f∗

is assumed to be smooth with respect to the underlying graph G.
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Hence, to recover the original signal, we can adopt the following

objective function:

argmin
f

𝑔(f) = ‖f − f0‖2 + 𝑐f𝑇 Lf, (4)

Then we have the following lemma.

Lemma 3.1. The GCN convolutional operator is one-step gradient

descent optimization of Eq. (4) when 𝑐 = 1
2 .

Proof. The gradient of 𝑔(f) at f0 is calculated as:

∇𝑔(f0) = 2(f0 − f0) + 2𝑐Lf0 = 2𝑐Lf0 . (5)

Then the one step gradient descent at f0 with learning rate 1 is

formulated as,

f0 − ∇𝑔(f0) = f0 − 2𝑐Lf0

= (I − 2𝑐L)f0

= (D̃− 1
2 ÃD̃

− 1
2 + L − 2𝑐L)f0 . (6)

By setting 𝑐 to 1
2 , we finally arrives at,

f0 − ∇𝑔(f0) = D̃
− 1

2 ÃD̃
− 1

2 f0 .
�

By extending the above observation from the signal vector f to

the feature matrix X, we can easily connect the general form of the

graph convolutional operator D̃− 1
2 ÃD̃

− 1
2X to Laplacian smoothing.

Hence, the graph convolution layer tends to increase the feature

similarity between the connected nodes. It is likely to destroy the

original feature similarity. In particular, for those disassortative

graphs where homphlily does not hold, this operation can bring in

enormous noise.

3.2 Empirical Study for GCN

In the previous subsection, we demonstrated that GCN naturally

smooths the features in the neighborhoods, consequently destroy-

ing the original feature similarity. In this subsection, we investigate

if GCN can preserve node feature similarity via empirical study.

We perform our analysis on two assortative graph datasets (i.e.,

Cora and Citeseer) and two disassortative graph datasets (i.e., Actor

and Cornell). The detailed statistics are shown in Table 2. For each

dataset, we first construct two 𝑘-nearest-neighbor (𝑘NN) graphs
based on original features and the hidden representations learned

from GCN correspondingly. Together with the original graph, we

have, in total, three graphs. Then we calculate the pairwise over-

lapping for these three graphs. We use A, A𝑓 and Aℎ to denote the

original graph, the 𝑘NN graph constructed from original features

and 𝑘NN graph from hidden representations, respectively. In this

experiment, 𝑘 is set to 3. Given a pair of adjacency matrices A1 and

A2, we define the overlapping 𝑂𝐿(A1,A2) between them as:

𝑂𝐿(A1,A2) =
‖A1 ∩ A2‖

‖A1‖
, (7)

where A1 ∩ A2 is the intersection of two matrices and ‖A1‖ is the
number of non-zero elements in A1. In fact, 𝑂𝐿(A1,A2) indicates
the overlapping percentage of edges in the two graphs A1 and A2.

Larger value of 𝑂𝐿(A1,A2) means larger overlapping between A1

and A2. We show the pairwise overlapping of these three graphs

in Table 1. We make the following observations:

Table 1: Overlapping percentage of different graph pairs.

Graph Pairs Cora Citeseer Actor Cornell

𝑂𝐿(A𝑓 ,Aℎ) 3.15% 3.73% 1.15% 2.35%

𝑂𝐿(Aℎ,A) 21.24% 18.77% 2.17% 7.74%

𝑂𝐿(A𝑓 ,A) 3.88% 3.78% 0.03% 0.91%

• Assortative graphs (Cora and Citeseer) have a higher overlapping

percentage of (A𝑓 ,A) while in disassortative graphs (Actor and

Cornell), it is much smaller. It indicates that in assortative graphs

the structure information and feature information are highly

correlated while in disassortative graphs they are not. It is in line

with the definition of assortative and disassortative graphs.

• As indicated by 𝑂𝐿(A𝑓 ,A), the feature similarity is not very

consistent with the graph structure. In assortative graphs, the

overlapping percentage of (A𝑓 ,Aℎ) is much lower than that of

(A𝑓 ,A). GCNwill even amplify this inconsistency. In other words,

although GCN takes both graph structure and node features as

input, it fails to capture more feature similarity information than

that the original adjacency matrix has carried.

• By comparing the overlapping percentage of (A𝑓 ,Aℎ) and (Aℎ,A),
we see the overlapping percentage of (Aℎ,A) is consistently

higher. Thus, GCN tends to preserve structure similarity instead

of feature similarity regardless if the graph is asssortative or not.

4 THE PROPOSED FRAMEWORK

In this section, we design a node feature similarity preserving graph

convolutional framework SimP-GCN by mainly solving the two

challenges mentioned in Section 1. An overview of SimP-GCN is

shown in Figure 1. It has twomajor components (i.e., node similarity

preserving aggregation and self-supervised learning) corresponding

to the two challenges, respectively. The node similarity preserving

aggregation component introduces a novel adaptive strategy in

Section 4.1 to balance the influence between the graph structure and

node features during aggregation. Then the self-supervised learning

component in Section 4.2 is to better preserve node similarity by

considering both similar and dissimilar pairs. Next we will detail

each component.

4.1 Node Similarity Preserving Aggregation

In order to endow GCN with the capability of preserving feature

similarity, we first propose to integrate the node features with the

structure information of the original graph by constructing a new

graph that can adaptively balance their influence on the aggregation

process. This is achieved by first constructing a 𝑘-nearest-neighbor
(𝑘NN) graph based on the node features and then adaptively in-

tegrating it with the original graph into the aggregation process

of GCN. Then, learnable self-loops are introduced to adaptively

encourage the contribution of a node’s own features in the aggre-

gation process.

4.1.1 Feature Graph Construction. In feature graph construction,

we convert the feature matrix X into a feature graph by generating

a 𝑘NN graph based on the cosine similarity between the features of

each node pair. For a given node pair (𝑣𝑖 , 𝑣 𝑗 ), their cosine similarity
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Node Similarity Preserving Aggregation

Self-Supervised Learning

Figure 1: An overall framework of the proposed SimP-GCN.

can be calculated as:

S𝑖 𝑗 =
x
�
𝑖 x𝑗

‖x𝑖 ‖
��x𝑗 �� . (8)

Then we choose 𝑘 = 20 nearest neighbors following the above

cosine similarity for each node and obtain the 𝑘NN graph. We

denote the adjacency matrix of the constructed graph as A𝑓 and

its degree matrix as D𝑓 .

4.1.2 Adaptive Graph Integration. The graph integration process

is adaptive in two folds: (1) each node adaptively balances the

information from the original graph and the feature 𝑘NN graph;

and (2) each node can adjust the contribution of its node features.

After we obtain the 𝑘NN graph, the propagation matrix P(𝑙) in
the 𝑙-th layer can be formulated as,

P
(𝑙) = s

(𝑙) ∗ D̃−1/2
ÃD̃

−1/2 + (1 − s
(𝑙) ) ∗ D−1/2

𝑓
A𝑓 D

−1/2
𝑓

, (9)

where s(𝑙) ∈ R𝑛 is a score vector which balances the effect of the

original and feature graphs. Note that “a∗M” denotes the operation

to multiply the 𝑖-th element vector awith the 𝑖-th row of the matrix

M. One advantage from s
(𝑙) is that it allows nodes to adaptively

combine information from these two graphs as nodes can have

different scores. To reduce the number of parameters in s
(𝑙) , we

model s(𝑙) as:

s
(𝑙) = 𝜎

(
H
(𝑙−1)

W
(𝑙)
𝑠 + 𝑏 (𝑙)𝑠

)
, (10)

where H(𝑙−1) ∈ R𝑛×𝑑 (𝑙−1)
denotes the input hidden representation

from previous layer (with H
(0) = X) and W

(𝑙)
𝑠 ∈ R𝑑 (𝑙−1) ×1 and 𝑏 (𝑙)𝑠

are the parameters for transformingH(𝑙−1) into the score vector s(𝑙) .
Here 𝜎 denotes an activation function and we apply the sigmoid

function. In this way, the number of parameters for construing s(𝑙)

has reduced from 𝑛 to 𝑑 (𝑙−1) + 1.

4.1.3 Adaptive Learnable Self-loops. In the original GCN, given

a node 𝑣𝑖 , one self-loop is added to include its own features into

the aggregation process. Thus, if we want to preserve more infor-

mation from its original features, we can add more self-loops to

𝑣𝑖 . However, the importance of node features could be distinct for

different nodes; and different numbers of self-loops are desired

for nodes. Thus, we propose to add a learnable diagonal matrix

D
(𝑙)
𝐾 = 𝑑𝑖𝑎𝑔

(
𝐾
(𝑙)
1 , 𝐾

(𝑙)
2 , . . . , 𝐾

(𝑙)
𝑛

)
to the propagation matrix P(𝑙) ,

P̃
(𝑙) = P

(𝑙) + 𝛾D(𝑙)
𝐾 , (11)

where D
(𝑙)
𝐾 adds learnable self-loops to the integrated graph. In

particular, 𝐾
(𝑙)
𝑖 indicates the number of self-loops added to node 𝑣𝑖

at the 𝑙-th layer. 𝛾 is a predefined hyper-parameter to control the

contribution of self-loops. To reduce the number of parameters, we

use a linear layer to learn 𝐾
(𝑙)
1 , 𝐾

(𝑙)
2 , . . . , 𝐾

(𝑙)
𝑛 as:

𝐾
(𝑙)
𝑖 = H

(𝑙−1)
𝑖 W

(𝑙)
𝐾 + 𝑏 (𝑙)𝐾 , (12)

where H
(𝑙−1)
𝑖 is the hidden presentation of 𝑣𝑖 at the layer 𝑙 − 1;

W
(𝑙)
𝐾 ∈ R𝑑 (𝑙−1) ×1 and 𝑏 (𝑙)𝐾 are the parameters for learning the self-

loops 𝐾
(𝑙)
1 , 𝐾

(𝑙)
2 , . . . , 𝐾

(𝑙)
𝑛 .

4.1.4 The Classification Loss. Ultimately the hidden representa-

tions can be formulated as,

H
(𝑙) = 𝜎 (P̃(𝑙)H(𝑙−1)

W
(𝑙) ), (13)

where W(𝑙) ∈ R𝑑 (𝑙−1) ×𝑑 (𝑙 )
, 𝜎 denotes an activation function such

as the ReLU function. We denote the output of the last layer as Ĥ,

then the classification loss is shown as,

L𝑐𝑙𝑎𝑠𝑠 =
1

|D𝐿 |

∑
(𝑣𝑖 ,𝑦𝑖 ) ∈D𝐿

ℓ
(
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Ĥ𝑖 ), 𝑦𝑖

)
, (14)

where D𝐿 is the set of labeled nodes, 𝑦𝑖 is the label of node 𝑣𝑖
and ℓ (·, ·) is the loss function to measure the difference between

predictions and true labels such as cross entropy.
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4.2 Self-Supervised Learning

Although the constructed 𝑘NN feature graph component in Eq. (10)

plays a critical role of pushing nodes with similar features to be-

come similar, it does not directly model feature dissimilarity. In

other words, it only can effectively preserve the top similar pairs of

nodes to have similar representations and will not push nodes with

dissimilar original features away from each other in the learned

embedding space. Thus, to better preserve pairwise node similarity,

we incorporate the complex pairwise node relations by proposing

a contrastive self-supervised learning component to SimP-GCN.

Recently, self-supervised learning techniques have been applied

to graph neural networks for leveraging the rich information in

tremendous unlabeled nodes [11, 12, 39, 40]. Self-supervised learn-

ing first designs a domain specific pretext task to assign constructed

labels for nodes and then trains the model on the pretext task to

learn better node representations. Following the joint training man-

ner described in [12, 40], we design a contrastive pretext task where

the self-supervised component is asked to predict pairwise feature

similarity. In detail, we first calculate pairwise similarity for each

node pair and sample node pairs to generate self-supervised training

samples. Specifically, for each node, we sample its𝑚 most similar

nodes and𝑚 most dissimilar nodes. Then the pretext task can be

formulated as a regression problem and the self-supervised loss can

be stated as,

L𝑠𝑒𝑙 𝑓 (A,X) =
1

|T |

∑
(𝑣𝑖 ,𝑣𝑗 ) ∈T

‖ 𝑓𝑤 (H(𝑙)
𝑖 − H

(𝑙)
𝑗 ) − S𝑖 𝑗 ‖2, (15)

where T is the set of sampled node pairs, 𝑓𝑤 is a linear mapping

function, S𝑖 𝑗 is defined in Eq. (8), and H
(𝑙)
𝑖 is the hidden representa-

tion of node 𝑣𝑖 at 𝑙-th layer. Note that we can formulate the pretext

task as a classification problem to predict whether the given node

pair is similar or not (or even the levels of similarity/dissimilarity).

However, in this work we adopt the regression setting and use the

first layer’s hidden representation, i.e., 𝑙 = 1 while setting𝑚 = 5.

4.3 Objective Function and Complexity
Analysis

With the major components of SimP-GCN, next we first present the

overall objective function where we jointly optimize the classifica-

tion loss along with the self-supervised loss. Thereafter, we present

a complexity analysis and discussion on the proposed framework.

4.3.1 Overall Objective Function. The overall objective function

can be stated as,

minL = L𝑐𝑙𝑎𝑠𝑠 + 𝜆L𝑠𝑒𝑙 𝑓 (16)

=
1

|D𝐿 |

∑
(𝑣𝑖 ,𝑦𝑖 ) ∈D𝐿

ℓ
(
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Ĥ𝑖 ), 𝑦𝑖

)

+
𝜆

|T |

∑
(𝑣𝑖 ,𝑣𝑗 ) ∈T

‖ 𝑓𝑤 (H(1)
𝑖 − H

(1)
𝑗 ) − S𝑖 𝑗 ‖2

where 𝜆 is a hyper-parameter that controls the contribution of self-

supervised loss (i.e., L𝑠𝑒𝑙 𝑓 of Eq. (15)) in addition to the traditional

classification loss (i.e., L𝑐𝑙𝑎𝑠𝑠 of Eq. (14)).

Table 2: Dataset Statistics.

Assortative Disassortative

Datasets Cora Cite. Pubm. Actor Corn. Texas Wisc.

#Nodes 2,708 3,327 19,717 7,600 183 183 251

#Edges 5,429 4,732 44,338 33,544 295 309 499

#Features 1,433 3,703 500 931 1,703 1,703 1,703

#Classes 7 6 3 5 5 5 5

4.3.2 Complexity Analysis. Here, we compare the proposedmethod,

SimP-GCN, with vanilla GCN by analyzing the additional complex-

ity in terms of time and model parameters.

Time Complexity. In comparison to vanilla GCN, the additional

computational requirement mostly comes from calculating the pair-

wise feature similarity for the 𝑘NN graph construction and self-

supervised component. Its time complexity is𝑂 (𝑛2) if done naïvely.
However, calculating pariwise similarity can be made significantly

more efficient. For example, the calculations are inherently paral-

lelizable. In addition, this has been a well studied problem and in the

literature there exist approximation methods that could be used to

significantly speedup the computation for larger graphs, such as [4]

that presented a divide-and-conquer method via Recursive Lanczos

Bisection, or [7] that is inherently suitable for MapReduce where

they empirically achieved approximate 𝑘NN graphs in 𝑂 (𝑛1.14).

Model Complexity. As shown in Section 4.1 and Section 4.2, our

model introduces additional parametersW
(𝑙)
𝑠 , 𝑏

(𝑙)
𝑠 ,W

(𝑙)
𝐾 , 𝑏

(𝑙)
𝐾 and

linear mapping 𝑓𝑤 . It should be noted thatW
(𝑙)
𝑠 ,W

(𝑙)
𝐾 ∈ R𝑑 (𝑙−1) ×1

and 𝑏
(𝑙)
𝑠 , 𝑏

(𝑙)
𝐾 ∈ R. Since 𝑓𝑤 transforms H to a one-dimensional

vector, the weight matrix in 𝑓𝑤 has a shape of 𝑑 (𝑙) × 1. Hence, com-

pared with GCN, the overall additional parameters of our model are

𝑂 (𝑑 (𝑙) ) where 𝑑 (𝑙) is the input feature dimension in the 𝑙-th layer.

It suggests that our model only introduces additional parameters

that is linear to the feature dimension.

5 EXPERIMENT

In this section, we evaluate the effectiveness of SimP-GCN under

different settings. In particular, we aim to answer the following

questions:

• RQ1: How does SimP-GCN perform on both assortative and

disassortative graphs?

• RQ2: Can SimP-GCN boost model robustness and defend against

graph adversarial attacks?

• RQ3: Does the framework work as designed? and How do differ-

ent components affect the performance of SimP-GCN?

Note that though there are many scenarios where node similarity

is important, we focus on the scenarios of disassortative graphs

and graphs manipulated by adversarial attacks to illustrate the ad-

vantages of the proposed framework by preserving node similarity.

5.1 Experimental Settings

5.1.1 Datasets. Since the performance of graph neural networks

can be significantly different on assortative and disassortative graphs,

we select several representative datasets from both categories to

conduct the experiments. Specifically, for assortative graphs we
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adopt three citation networks that are commonly used in the GNN

literature, i.e., Cora, Citeseer and Pubmed [15]. For disassortative

graphs, we use one actor co-occurrence network, i.e., Actor [31],

and three webpage datasets, i.e., Cornell, Texas and Wisconsin [27].

The statistics of these datasets are shown in Table 2.

5.1.2 Baselines. To evaluate the effectiveness of the proposed

framework, we choose the following representative semi-supervised

learning baselines including the state-of-the-art GNN models:

• LP [43]: Label Propagation (LP) explores structure and label

information by a Gaussian random field model. Note that LP

does not exploit node features.

• GCN [15]: GCN is one of the most popular graph convolutional

models and our proposed model is based on it.

• 𝑘NN-GCN [8]: It is a variant of GCN which takes the 𝑘-nearest
neighbor graph created from the node features as input. Here

we use it as a baseline to check the performance of directly

employing the 𝑘NN graph without using the original graph.

• (A+𝑘NN)-GCN: GCN that takes A + A𝑓 as the input graph.

• GAT [33]: Graph attention network (GAT) employs attention

mechanism and learns different scores to different nodes within

the neighborhood. It is widely used as a GNN baseline.

• JK-Net [37]: JK-Net uses dense connections to leverage different

neighbor ranges for each node to learn better representations.

• GCNII [5]: Based on GCN, GCNII employs residual connection

and identity mapping to achieve better performance. GCNII* is a

variant of GCNII with more parameters.

• Geom-GCN [27]: Geom-GCN explores to capture long-range

dependencies in disassortative graphs. It uses the geometric rela-

tionships defined in the latent space to build structural neighbor-

hoods for aggregation. There are three variants of Geom-GCN:

Geom-GCN-I, Geom-GCN-P and Geom-GCN-S.

Note thatGeom-GCN is mainly designed for disassortative graphs;

thus we only report its performance on disassortative graphs.

5.1.3 Parameter Setting. For experiments on assortative graphs,

we set the number of layers in GCN and SimP-GCN to 2, with

hidden units 128, 𝐿2 regularization 5𝑒−4, dropout rate 0.5, epochs
200 and learning rate 0.01. In SimP-GCN, the weighting parame-

ter 𝜆 is searched from {0.1, 0.5, 1, 5, 10, 50, 100}, 𝛾 is searched from

{0.01, 0.1} and the initialization of 𝑏𝑠 is searched from {0, 2}. Since
GCNII and JK-Net with multi-layers can use much higher memory

due to more parameters, we restrict the depth to 4. For experiments

on disassortative graphs, we set the number of layers in GCN and

SimP-GCN to 2, with learning rate 0.05, dropout rate 0.5, epochs

500 and patience 100. The number of hidden units is tuned from {16,

32, 48} and 𝐿2 regularization is tuned from {5𝑒-4, 5𝑒-5}. SimP-GCN

further searches 𝜆 from {0.1, 1, 10} and 𝛾 from {0.01, 0.1, 1}. For

other baseline methods, we use the default parameter settings in

the authors’ implementation.

5.2 Performance Comparison

In this subsection, we answer the first question and compare the

performance on assortative and disassortative graphs, respectively.

5.2.1 Performance Comparison on Assortative Graphs. For the ex-

periments on assortative graphs, we follow the widely used semi-

supervised setting in [15] with 20 nodes per class for training, 500

Table 3: Node classification accuracy (%) on assortative

graphs. The best performance is highlighted in bold.

Method Cora Citeseer Pubmed

LP 74.6 57.7 71.6

GCN 81.3 71.5 79.3

𝑘NN-GCN 67.4 68.7 78.9

(A+𝑘NN)-GCN 79.1 71.1 80.8

GAT 83.1 70.8 78.5

JK-Net 80.3 68.5 78.3

GCNII 82.6 68.9 78.8

GCNII* 82.3 67.9 78.2

SimP-GCN 82.8 72.6 81.1

nodes for validation and 1000 nodes for testing. We report the aver-

age accuracy of 10 runs in Table 3. On the three assortative graphs,

SimP-GCN consistently improves GCN and achieves the best per-

formance in most settings. The improvement made by SimP-GCN

demonstrates that preserving feature similarity can benefit GCN

in exploiting structure and feature information. It is worthwhile to

note that LP and 𝑘NN, which only take the graph structure or node

features as input, can achieve reasonable performance, but they

cannot beat GCN. The variant (A+𝑘NN)-GCN cannot outperform

𝑘NN-GCN or GCN. This suggests that learning a balance between

graph structure and node features is of great significance.

Table 4: Node classification accuracy (%) on disassortative

graphs. The best performance is highlighted in bold.

Method Actor Cornell Texas Wisconsin

LP 23.53 35.95 32.70 29.41

GCN 26.86 52.70 52.16 45.88

𝑘NN-GCN 33.77 81.35 79.73 81.35

(A+𝑘NN)-GCN 32.83 76.49 79.60 80.98

GAT 28.45 54.32 58.38 49.41

JK-Net 27.41 57.84 55.95 50.78

Geom-GCN-I 29.09 56.76 57.58 58.24

Geom-GCN-P 31.63 60.81 67.57 64.12

Geom-GCN-S 30.30 55.68 59.73 56.67

GCNII 33.91 74.86 69.46 74.12

GCNII* 35.18 76.49 77.84 81.57

SimP-GCN 36.20 84.05 81.62 85.49

5.2.2 Performance Comparison on Disassortative Graphs. In this ex-

periment, we report the performance on four disassortative graphs,

i.e., Actor, Cornell, Texas and Wisconsin. Following the common

setting of experiments on disassortative graphs [23, 27], we ran-

domly split nodes of each class into 60%, 20%, and 20% for training,

validation and test.

Note that both Geom-GCN and GCNII are the recent models

that achieve the state-of-the-art performance on disassortative

graphs. We report the average accuracy of all models on the test

sets over 10 random splits in Table 4. We reuse the metrics reported

in [5] for GCN, GAT and Geom-GCN. From the results we can
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(a) Cora (b) Citeseer (c) Pubmed

Figure 2: Node classification accuracy under non-targeted attack (metattack).

see that the performance of LP is extremely low on all datasets,

which indicates that structure information is not very useful for

the downstream task. Besides, the fact that GCN, GAT, JK-Net and

Geom-GCN cannot outperform 𝑘NN-GCN verifies that feature in-

formation in those disassortative graphs are much more important

and the original structure information could even be harmful. We

note that (A+𝑘NN)-GCN cannot improve 𝑘NN-GCN. It supports
that simply combining structure and features is not sufficient. SimP-

GCN consistently improves GCN by a large margin and achieves

state-of-the-art results on four disassortative graphs.

5.3 Adversarial Robustness

Traditional deep neural networks can be easily fooled by adversar-

ial attacks [19, 20, 36]. Similarly, recent research has also demon-

strated that graph neural networks are vulnerable to adversarial

attacks [14, 30, 44]. In other words, unnoticeable perturbation on

graph structure can significantly reduce their performances. Such

vulnerability has raised great concern for applying graph neural

networks in safety-critical applications. Although attackers can

perturb both node features and graph structures, the majority of

existing attacks focus on changing graph structures. Recall that

SimP-GCN is shown to greatly improve GCN when the structure

information is not very useful in Section 5.2.2. Therefore, in this

subsection, we are interested in examining its potential benefit

on adversarial robustness. Specifically, we evaluate the node clas-

sification performance of SimP-GCN under non-targeted graph

adversarial attacks. The goal of non-targeted attack is to degrade

the overall performance of GNNs on the whole node set. We adopt

metattack [45] as the attack method. We focus on attacking graph

structure and vary the perturbation rate, i.e., the ratio of changed

edges, from 0 to 25% with a step of 5%. To make better comparison,

we include GCN, GAT and the state-of-the-art defensemodels, GCN-

Jaccard [34] and Pro-GNN [14] implemented by DeepRobust1 [21],

as baselines and use the default hyper-parameter settings in the au-

thors’ implementations. For each dataset, the hyper-parameters of

SimP-GCN are set as the same values under different perturbation

rates. We follow the parameter settings of baseline and attack meth-

ods in [14] and evaluate models’ robustness on Cora, Citeseer and

Pubmed datasets. Furthermore, as suggested in [14], we randomly

1https://github.com/DSE-MSU/DeepRobust

choose 10% of nodes for training, 10% of nodes for validation and

80% of nodes for test. All experiments are repeated 10 times and

the average accuracy of different methods under various settings is

shown in Figure 2.

As we can observe from Figure 2, SimP-GCN consistently im-

proves the performance of GCN under different perturbation rates

of adversarial attack on all three datasets. Specifically, SimP-GCN

improves GCN by a larger margin when the perturbation rate is

higher. For example, it achieves over 20% improvement over GCN

under the 25% perturbation rate on Cora dataset. This is because

the structure information will be very noisy and misleading when

the graph is heavily poisoned. In this case, node feature similarity

can provide strong guidance to train the model and boost model ro-

bustness. SimP-GCN always outperforms GCN-Jaccard and shows

comparable performance to Pro-GNN on all datasets. It even obtains

the best performance on the Citeseer dataset. These observations

suggest that by preserving node similarity, SimP-GCN can be robust

to existing adversarial attacks.

5.4 Further Probe

In this subsection, we take a deeper examination on the proposed

framework to understand how it works and how each component

affects its performance.

5.4.1 Is Node SimilarityWell Preserved? Next, we investigatewhether

SimP-GCN can preserve node feature similarity. Following the same

evaluation strategy in Section 3.2, we focus on the overlapping per-

centage of graphs pairs. Specifically, we construct 𝑘NN graphs from

the learned hidden representations of GCN and SimP-GCN, denoted

as Aℎ , and calculate the overlapping percentages 𝑂𝐿(A𝑓 ,Aℎ) and
𝑂𝐿(Aℎ,A) on all datasets. The results are shown in Figure 3. From

the results, we make the following observations:

• For both assortative and disassortative graphs, SimP-GCN always

improves the overlapping percentage between feature and hidden

graphs, i.e.,𝑂𝐿(A𝑓 ,Aℎ). It shows that SimP-GCN can effectively

preserve more information from feature similarity. Especially

in disassortative graphs where homophily is low, SimP-GCN

essentially boosts 𝑂𝐿(A𝑓 ,Aℎ) by a large margin, e.g., roughly

10% on the Actor dataset.

• In disassortative graphs, SimP-GCN decreases the overlapping

percentage between hidden and original graphs, i.e., 𝑂𝐿(Aℎ,A).
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(a) Assortative graphs (b) Disassortative graphs

Figure 3: Overlapping percentage on assortative and disassortative graphs. “Ours" means SimP-GCN. Blue bar indicates the

overlapping between feature and hidden graphs; and orange bar denotes the overlapping between hidden and original graphs.

(a) Cora (b) Actor (c) Wisconsin

Figure 4: Learned values of s(1) , s(2) , D(1)
𝑛 and D

(2)
𝑛 on Cora, Actor and Wisconsin.

One reason is that the structure information in disassortative

graphs is less useful (or even harmful) to the downstream task.

Such phenomenon is also in line with our observation in Sec-

tion 5.2.2. On the contrary, in assortative graphs both𝑂𝐿(Aℎ,A)
and 𝑂𝐿(A𝑓 ,Aℎ) are improved, which indicates that SimP-GCN

can explore more information from both structure and features

for assortative graphs.

5.4.2 Do the Score Vectors and Self-loop Matrices Work? To study

how the score vectors (s(1) , s(2) ) and learnable self-loop matrices

(D(1)
𝑛 ,D

(2)
𝑛 ) in Eq. (10) benefit SimP-GCN, we set 𝛾 to 0.1 and

visualize the learned values in Figure 4. Due to the page limit, we

only report the results on Cora, Actor and Wisconsin. From the

results, we have the following findings:

• The learned values vary in a range, indicating that the designed

aggregation scheme can adapt the information differently for

individual nodes. For example, in Cora dataset, s(1) , s(2) , 𝛾D(1)
𝑛

and𝛾D
(2)
𝑛 are in the range of [0.44, 0.71], [0.98, 1.00], [−0.03, 0.1]

and [0.64, 1.16], respectively.
• On the assortative graph (Cora), 𝛾D

(1)
𝑛 is extremely small and the

model is mainly balancing the information from original and fea-

ture graphs. On the contrary, in disassortative graphs (Actor and

Wisconsin), 𝛾D
(1)
𝑛 has much larger values, indicating that node

original features play a significant role in making predictions for

disassortative graphs.

5.4.3 Ablation Study. To get a better understanding of how differ-

ent components affect the model performance, we conduct ablation

studies and answer the third question in this subsection. Specifically,

we build the following ablations:

• Keeping self-supervised learning (SSL) component and all other

components. This one is our original proposed model.

• Keeping SSL component but removing the learnable diagonal

matrix D𝑛 from the propagation matrix P̃, i.e., setting 𝛾 to 0.

• Removing SSL component.

• Removing SSL component and the learnable diagonal matrix D𝑛 .

Since SimP-GCN achieves the most significant improvement on

disassortative graphs, we only report the performance on disassor-

tative graphs. We use the best performing hyper-parameters found

for the results in Table 4 and report the average accuracy of 10 runs

in Table 5. By comparing the ablations with GCN, we observe that

all components contribute to the performance gain: A𝑓 and D𝑛

essentially boost the performance while the SSL component can

further improve the performance based on A𝑓 and D𝑛 .

6 CONCLUSION

Graph neural networks extract effective node representations by

aggregating and transforming node features within the neighbor-

hood. We show that the aggregation process inevitably breaks node

similarity of the original feature space through theoretical and

empirical analysis. Based on these findings, we introduce a node
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Table 5: Ablation study results (% test accuracy) on disassor-

tative graphs.

Ablation Actor Corn. Texa. Wisc.

SimP-GCN

- with SSL and (A,A𝑓 ,D𝑛) 36.20 84.05 81.62 85.49

- with SSL and (A,A𝑓 ) 35.75 65.95 71.62 81.37

- w/o SSL and with (A,A𝑓 ,D𝑛) 36.09 82.70 79.73 84.12

- w/o SSL and with (A,A𝑓 ) 34.68 64.59 68.92 81.57

GCN 26.86 52.70 52.16 45.88

similarity preserving graph convolutional neural network model,

SimP-GCN, which effectively and adaptively balances the structure

and feature information as well as captures pairwise node similarity

via self-supervised learning. Extensive experiments demonstrate

that SimP-GCN outperforms representative baselines on a wide

range of real-world datasets. As one future work, we plan to explore

the potential of exploring node similarity in other scenarios such

as the over-smoothing issue and low-degree nodes.
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